首页

  • 学历类
  • 职业资格
  • 公务员
  • 医卫类
  • 建筑工程
  • 外语类
  • 外贸类
  • 计算机类
  • 财会类
  • 技能鉴定
当前位置: 我要找题网 > 考试试卷

2015年高考高职单招数学模拟试题

卷面总分:0分 答题时间:分钟 试卷题量:0题

一、多选题 (共28题,共0分)
1.

已知集合M=0,1,2B=1,4,那么集合AUB等于

  • A.1
  • B.4
  • C.2,3
  • D.1,2,3,4
2.

在等比数列等于()

  • A.6
  • B.8
  • C.10
  • D.16
3.

已知向量a=(3,1),b=(-2,5) ,那么2a+b等于()

  • A.(-1,11 )
  • B.(4,7 )
  • C.(1,6 )
  • D.(5, -4)
4.

函数y=log2 (x+1)的定义域是()

  • A.
  • B.
  • C.
  • D.
5.

如果直线3x-y=0与直线mx+y-1=0 平行,那么m的值为()

  • A.-3
  • B.-1/3
  • C.1/3
  • D.3
6.

函数的图象可以看做是把函数y=sinx 的图象上所有点的纵坐标保持不变,横坐标缩短到原来的1/2倍而得到,那么的值为()

  • A.4
  • B.2
  • C.1/2
  • D.3
7.

在函数中,奇函数的是()

  • A.
  • B.
  • C.
  • D.
8.

的值为()

  • A.
  • B.-1/2
  • C.1/2
  • D.
9.

不等式的解集是()

  • A.
  • B.
  • C.
  • D.
10.

实数 lg4+2lg5 的值为()

  • A.2
  • B.5
  • C.10
  • D.20
11.

某城市有大型、中型与小型超市共1500 个,它们的个数之比为 1:5:9.为调查超市每日的零售额情况,需通过分层抽样抽取 30 个超市进行调查,那么抽取的小型超市个数为()

  • A.5
  • B.9
  • C.18
  • D.20
12.

已知平面阿尔法//平面贝塔,直线m属于平面阿尔法,那么直线m与平面贝塔的关系是

  • A.
  • B.
  • C.
  • D.
13.

b=2, c=1,那么A的值是()

  • A.
  • B.
  • C.
  • D.
14.

一个几何体的三视图如右图所示,该几何体的表面积是()

  • A.
  • B.
  • C.12π
  • D.14π
15.

当的最小值是()

  • A.1
  • B.2
  • C.
  • D.4
16.

从数字1,2,3,4,5中随机抽取两个数字(不允许重复),那么这两个数字的和是奇数的概率为()

  • A.4/5
  • B.3/5
  • C.2/5
  • D.1/5
17.

当x, y满足条件时,目标函数z=x+y的最小值是()

  • A.2
  • B.2.5
  • C.3.5
  • D.4
18.

已知函数,那么实数 x0的值为()

  • A.4
  • B.0
  • C.1或4
  • D.1或-2
19.

为改善环境,某城市对污水处理系统进行改造。三年后,城市污水排放量由原来每年排放 125 万吨降到 27 万吨,那么污水排放量平均每年降低的百分率是()

  • A.50%
  • B.40%
  • C.30%
  • D.20%
20.

在的形状一定是()

  • A.等边三角形
  • B.等腰三角形
  • C.直角三角形
  • D.等腰直角三角形
21.

已知向量a= (2,3), b=(1,m) ,且 a垂直b,那么实数 m 的值为_____。

22.

右图是甲、乙两名同学在五场篮球比赛中得分情况的茎叶图.那么甲、乙两人得分的标准差 S甲____S乙 (填<,>,= )

23.

某程序框图如下图所示,该程序运行后输出的a的最大值为____

24.

数学选修课中,同学们进行节能住房设计,在分析气候和民俗后, 设计出房屋的剖面图 (如图所示).屋顶所在直线的方程分别是y=1/2x+3和和y=-1/6x+5,为保证采光,竖直窗户的高度设计为 1m那么点A的横坐标是____

25.

在三棱锥 P-ABC中,侧棱 PA⊥底面 ABC,AB⊥BC,E,F 分别是 BC,PC的中点. (I) 证明: EF∥平面 PAB; (II) 证明: EF⊥BC

26.

已知向量 a=(2sinx,2sinx) ,b=(cosx, sinx) ,函数f(x)=ab+1. (I) 如果f(x)=1/2,求 sin4x 的值; (II)如果,求f (x) 的取值范围.

27.

已知图1是一个边长为1的正三角形,三边中点的连线将它分成四个小三角形,去掉中间的一个小三角形,得到图2,再对图2中剩下的三个小三角形重复前述操作,得到图3,重复这种操作可以得到一系列图形.记第n个图形中所有剩下的小三角形的面积之和为an,所以去掉的三角形的周长之和为bn. (I) 试求 a4, b4; (II)试求 an , bn .

28.

已知圆C的方程是 (I)如果圆C与直线y=0没有公共点,求实数m的取值范围; (II)如果圆C过坐标原点,直线l过点P(0,)(0≤a≤2),且与圆C交于A,B两点,对于每一个确定的a,当△ABC的面积最大时,记直线l的斜率的平方为u,试用含a的代数式表示u,试求u的最大值.

答题卡(剩余 32 道题)
一、多选题
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28